Process Approach to Determining Quality Inspection Deployment Product Overview

May 7, 2015

Eric S. Richter and Arthur L. McClellan
Systems and Operations Assurance Department
Mission Assurance Subdivision

Prepared for:
National Reconnaissance Office
14675 Lee Road
Chantilly, VA 20151-1715

Contract No. FA8802-14-C-0001

Authorized by: Engineering and Technology Group

Developed in conjunction with Government and Industry contributions as part of the U.S. Space Programs Mission Assurance Improvement Workshop.
Distribution Statement A: Approved for public release; Distribution unlimited.
Acknowledgements

This document was created by multiple authors throughout the government and the aerospace industry. For their content contributions, we thank the following contributing authors for making this collaborative effort possible:

Jack Harrington – The Boeing Company
Jeanne Kerr – Lockheed Martin Corporation
Dan Gresham – Orbital Sciences

Dave Martin – Raytheon Space and Airborne Systems
Art McClellan – The Aerospace Corporation
Brian Reilly – Defense Contract Management Agency

A special thank you for co-leading this team and efforts to ensure completeness and quality of this document goes to:

Eli Minson – Ball Aerospace and Technologies Corporation
Frank Pastizzo – SSL
Eric Richter – The Aerospace Corporation

The Topic Team would like to acknowledge the contributions and feedback from the following organizations:

The Aerospace Corporation
Ball Aerospace and Technologies Corporation
The Boeing Company
Defense Contract Management Agency (DCMA)
Lockheed Martin Corporation

Northrop Grumman Aerospace Systems
Orbital Sciences
Raytheon
SSL

The authors deeply appreciate the contributions of the subject matter experts who reviewed the document:

Kathy Augason – Lockheed Martin Corporation
Kevin Craig – SSL
Ken Dodson – SSL
Ed Gaitley – The Aerospace Corporation
Neil Limpanukorn – SSL

David Newton – Northrop Grumman
Ethan Nguyen – Raytheon
Michael Phelan – DCMA
Robert Pollard – Ball Aerospace and Technologies Corporation
Thomas Reinsel – Raytheon
Process Approach to Determining Quality Inspection Deployment

Product Overview

Eli Minson, Ball Aerospace
Frank Pastizzo, SSL
Eric Richter, The Aerospace Corporation

May 7, 2015
Agenda

• Motivation and Team Charter
• Product Overview
• Examples
• Topic Details
• Topic Follow-on Recommendations
• Team Membership and Recognition
Motivation for Topic

• DOD issued 55 years ago MIL-Q-9858A and MIL-I-45208A
 – Emphasis on complete and frequent visual inspection

• Technology has improved since then
 – Process controls
 – Product quality
 – Inspection capabilities

• Inspection change versus risk guidance is lacking

Team Charter

• Develop a tool for determining if a change in inspection approach is warranted
 – Review industry data and feedback from DCMA to identify candidate processes

 – Identify best practices for optimal quality inspection planning and deployment

 – Evaluate candidate processes using new tool
Decision Tree

- Manufacturing Process Change
- Inspection Process Change
- Data Driven Inspection Change

Example
ICT via Flying Probe

- Shift inspection of PWB from manual inspection to flying head automated probe
 - False errors manual inspection reduced
 - Time study of the same board shows significant time reduction
 - Output of machine lists part non-conformities
 - Manual Inspection covers 10-20% of parts not covered by the machine
In-Circuit Test via Flying Head Probe Analyses Performed

Critical Process
- Reviewed historical inspection process output
- Reviewed customer requirements
- Identified potential tool suppliers
- Performed risk analysis against existing processes
- Study of cost vs. CAPEX vs. inspection performance completed

Process Capability
- Reviewed supplier tool sets
- Performed bench test using EDU boards
- Verified results against existing inspection method
- Identified process accuracy and repeatability issues
- Compared results to risk and cost analyses
In-Circuit Test via Flying Head Probe Analyses Performed

Effective Inspection

- Test board coverage and issues reviewed
- Identified requirements against typical part usage
- Identified part types and applications where ICT not able to capture all issues

ROI

- Performed study for purchasing unit vs. outsourcing
- Identified multiple suppliers and reviewed capabilities against requirements
Analysis Results into Tool

<table>
<thead>
<tr>
<th>Analysis Category</th>
<th>Entries in tool</th>
<th>Manufacturing Process Change</th>
<th>Inspection Process Change</th>
<th>Data Driven Insp. Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Lines 1-5</td>
<td>40%</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>Inspection</td>
<td>Lines 6-8</td>
<td>30%</td>
<td>45%</td>
<td>38%</td>
</tr>
<tr>
<td>Cost and Customer Lines 9-10</td>
<td>30%</td>
<td>33%</td>
<td></td>
<td>40%</td>
</tr>
</tbody>
</table>

Quadrant Analysis

- **JUST DO IT QUADRANT**
 - High Return, Low Investment
- **STRATEGIC QUADRANT**
 - High Return, High Investment
- **BACKLOG QUADRANT**
 - Low Return, High Investment
- **FORGET IT QUADRANT**
 - Low Return, Low Investment

Strategic Quadrant

- **RETURN ON INVESTMENT**
 - 100% Return
 - 50% Return
 - 0% Return

- **INVESTMENT**
 - 100% Investment
 - 50% Investment
 - 0% Investment
Analyses

1. Do the results of a PFMEA show potential for improved quality?
2. Is the process qualified and capable?
3. Does the first article indicate less inspection is required?
4. Does the current process have a low level of nonconformities?
5. Does the proposed process output rate affect inspection capabilities?
6. Was a gage R&R performed with personnel performing the inspection function?
7. Will the improved inspector process increase the ability to find nonconformities?
8. Will the process change reduce inspector escapes?
9. Has a cost analysis been performed ($p<k_1/k_2$, see Appendix B)?
10. Will the customer allow the change?

Weight

- Manufacturing Process Change
- Inspection Process Change
- Management or Customer Input

Justification

Fixed by Tool

User Modifiable

Return

1. Does not justify removal of inspection process
2. Additional data required before decision can be made
3. Data Justifies capabilities study for process modification
4. Justifies modification of inspection process
5. Justifies removal of inspection process

Investment

1. Low Effort (Easy or completed, limited personnel, <3 months)
2. Between Low and Medium
3. Medium Effort (Hurdles, somewhat difficult, >6 months)
4. Between Medium and High
5. High Effort (Complex, lots of people, >1 yr)

Weighted results
Additional Examples in Product

Torque Witness by Inspection Personnel

Test to flight (class 2) electrical mates

Evaluating whether or not to eliminate Inspection witness of "Torque" operations

Elimination of a secondary inspection (by QA) for test to flight connector mates
Additional Examples in Product

Receiving Inspection of subcontracted products (QSI-1002)

Backlog

Evaluating reduction in duplicative inspection efforts upon receipt for items that are Final Source Inspected

Examples of Each Potential Outcome

- **JUST DO IT QUADRANT**
- **STRATEGIC QUADRANT**
- **BACKLOG QUADRANT**
- **FORGET IT QUADRANT**
Target Audience and Intended Product Use

• Target Audience
 – Quality organizations looking for efficiencies
 – Manufacturing organizations pursuing new technology
 – Stakeholders seeking ways to reduce non-value added costs

• How Used
 – Best applied early in change evaluation decision
 – Useful when many trades are possible
 – Provides best indication of tradeoffs resulting from a proposed process change
Quality Deployment Team Membership

Core Team

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>McClellan</td>
<td>The Aerospace Corporation</td>
</tr>
<tr>
<td>Eli</td>
<td>Minson</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Frank</td>
<td>Pastizzo</td>
<td>SSL</td>
</tr>
<tr>
<td>Eric</td>
<td>Richter</td>
<td>The Aerospace Corporation</td>
</tr>
<tr>
<td>Jack</td>
<td>Harrington</td>
<td>Boeing</td>
</tr>
<tr>
<td>Jeanne</td>
<td>Kerr</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>Dan</td>
<td>Gresham</td>
<td>Orbital</td>
</tr>
<tr>
<td>Dave</td>
<td>Martin</td>
<td>Raytheon</td>
</tr>
<tr>
<td>Brian</td>
<td>Reilly</td>
<td>DCMA</td>
</tr>
<tr>
<td>Daniel</td>
<td>Hyatt</td>
<td>MDA</td>
</tr>
</tbody>
</table>

Bold – co-leads

SME Team

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kathy</td>
<td>Augason</td>
<td>Lockheed Martin</td>
</tr>
<tr>
<td>Kevin</td>
<td>Craig</td>
<td>SSL</td>
</tr>
<tr>
<td>Ken</td>
<td>Dodson</td>
<td>SSL</td>
</tr>
<tr>
<td>Frank</td>
<td>Fieldson</td>
<td>Harris</td>
</tr>
<tr>
<td>Edward</td>
<td>Gaitley</td>
<td>The Aerospace Corporation</td>
</tr>
<tr>
<td>Anthony</td>
<td>Gritsavage</td>
<td>NASA</td>
</tr>
<tr>
<td>Michael</td>
<td>Kelly</td>
<td>NASA</td>
</tr>
<tr>
<td>Neil</td>
<td>Limpanukorn</td>
<td>SSL</td>
</tr>
<tr>
<td>Michael</td>
<td>Phelan</td>
<td>DCMA</td>
</tr>
<tr>
<td>Robert</td>
<td>Pollard</td>
<td>Ball Aerospace</td>
</tr>
<tr>
<td>Thomas J.</td>
<td>Reinsel</td>
<td>Raytheon</td>
</tr>
<tr>
<td>Ric</td>
<td>Alvarez</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Dave</td>
<td>Newton</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Ethan</td>
<td>Nguyen</td>
<td>Raytheon</td>
</tr>
</tbody>
</table>
Process Approach to Determining Quality Inspection Deployment Product Overview

Approved Electronically by:

Todd M. Nygren, GENERAL MANAGER
SYSTEMS ENGINEERING DIVISION
ENGINEERING & TECHNOLOGY GROUP

Jacqueline M. Wyrwitzke, PRINC DIRECTOR
MISSION ASSURANCE SUBDIVISION
SYSTEMS ENGINEERING DIVISION
ENGINEERING & TECHNOLOGY GROUP

Catherine J. Steele, SR VP NATL SYS NATIONAL SYSTEMS GROUP

Jackie M. Webb-Larkin, SECURITY SPECIALIST III
GOVERNMENT SECURITY SECURITY OPERATIONS OPERATIONS & SUPPORT GROUP

© The Aerospace Corporation, 2015.
All trademarks, service marks, and trade names are the property of their respective owners.
SK0789
Process Approach to Determining Quality Inspection Deployment Product Overview

Technical Peer Review Performed by:

Jacqueline M. Wyrwitzke, PRINC DIRECTOR
MISSION ASSURANCE SUBDIVISION
SYSTEMS ENGINEERING DIVISION
ENGINEERING & TECHNOLOGY GROUP

Eric S. Richter, ENGRG SPCLST SR
SYSTEMS AND OPERATIONS
ASSURANCE DEPT
MISSION ASSURANCE SUBDIVISION
ENGINEERING & TECHNOLOGY GROUP

Arthur L. McClellan, DIRECTOR DEPT
SYSTEMS AND OPERATIONS
ASSURANCE DEPT
MISSION ASSURANCE SUBDIVISION
ENGINEERING & TECHNOLOGY GROUP

Cheryl L. Sakaizawa, ADMINISTRATIVE SPEC III
MISSION ASSURANCE SUBDIVISION
SYSTEMS ENGINEERING DIVISION
ENGINEERING & TECHNOLOGY GROUP

© The Aerospace Corporation, 2015.
All trademarks, service marks, and trade names are the property of their respective owners.
SK0789